
How to create
Brilliant CF Conventions

John Caron
UCAR/Unidata
Feb 25, 2015

CF 2.0

Standards
Cant live with them, cant live without them

Confessions of a Software Library Writer

Scattered thoughts about
Standards and Data Models

For earth-science data
As told by a writer of software libraries and tools

Overview
● Hand-waving about standards (OGC, WMO, CF)
● Data Models
● What is a Dimension?
● Grib Collections
● Big Data
● Postmodernism
● Java vs Python

Which Comes First?

● Need a standard before you can implement it.
● Need a “best” practice before you can standardize it.

 Standard Practice
 Practice

 Practice

Creating standards: Necessary tensions

Abstraction: general vs specific
Control: constraint vs anarchy
Idealism: standard (idea) vs implementation
(code)
Insularity: internal vs external
Revolution: backwards compatibility vs innovation
Reproduction: incremental vs syncretic

Creating standards: Musts
1. Must have an iterative process
2. Must separate semantics from encoding
3. Must enable a community of practice

Clarify, refine, get advice, document, create examples

4. Must implement in software
Ideally 2+ independent implementation
Ideally a reference implementation
Must test interoperability

5. Must have feedback loops

Standards
● OGC - WCS, WMS, O&M, SOS, ...

○ abstract, formal, prescriptive, conformance
● WMO - GRIB, BUFR

○ pragmatists, controlled vocabularies
○ WMO only, closed process

● CF
○ pragmatists, narrow scope
○ netCDF-centric
○ ad-hoc, bespoke

Creating Standards: Process
● The standards process is a group process

○ small vs large number of people; email vs face-to-face
○ requires management as well as technical expertise
○ requires emotional intelligence

● The standards document reflects human understanding
○ describes the Convention, it is not the Convention
○ examples, FAQ, software, conformance, standard tests

● The Convention reflects software understanding
● Conventions need versioning
● You will only work on problems you need to solve

Carl Jung’s “ways of knowing”
Thinking

Intuition Sensing

Feeling
“Under sensation I include all perceptions by means of the sense organs; by thinking, I
mean the function of intellectual cognition and the forming of logical conclusions; feeling is a
function of subjective evaluation; intuition I take as perception by way of the unconscious, or
perception of unconscious events”

Where does THREDDS fit in?

NetCDF

GRIB

File Format / API

CF

WMO

Semantic
Conventions

WCS

OPeNDAP

Remote Access
Protocols

THREDDS
NetCDF-JavaNUWG

PMEL-EPIC

Encoding Standards
for Data Producers

Output Standards
for Data Consumers

Software libraries

API

Whats in a file?
OS File:
Bag of Bytes

NetCDF/HDF File:
Multidimensional Arrays

Collection of Objects
Feature Types:

What is our plan for World Domination?

● Independent implementation of NetCDF in Java - portability
● But meteorology doesn’t store data in netCDF (GRIB, BUFR)
● For app, its the API that matters, not the file format
● Make everything look like netCDF, access through common API
● N*M ➔ N+M
● Its the data model, stupid
● Common Data Model (CDM)

http://www.unidata.ucar.edu/software/thredds/v4.5/netcdf-java/reference/formats/FileTypes.html
http://www.unidata.ucar.edu/software/thredds/v4.5/netcdf-java/CDM/
http://www.unidata.ucar.edu/software/thredds/v4.5/netcdf-java/CDM/

What is a Data Model?
● Language for talking about your problem independent of

the details of encoding and language
● A simplification of your problem to emphasize its salient

features
● If you are a software engineer, you will use UML

(Unified Modeling Language)

NetCDF
Classic model

NetCDF-4
Data Model

Common Data Model
Data Access Layer

Common Data Model
Coordinate Systems Layer

Common Data Model
Point Feature Types

Proposed CF Data Model
 17/12/2012

OGC Standard
CF-netCDF Data Model
CF Variable and Standard Attributes
Domenico and Nativi
2012-Aug 12

CF Coordinate Variables, Coordinate Types,
Coordinate Systems, and Grid Cells
Domenico and Nativi
2012-Aug 12

OGC CF-NetCDF Requirements (67)
● Any data instantiating a concrete CF-netCDF dataset shall conform with

the UML diagrams in Figure 3 and Figure 4
● Any CF-netCDF Dataset that uses the CF convention shall define the

global attribute Conventions to the string value "CF-1.6".
● For a given spatial-temporal CF-netCDF Variable, its spatial-temporal

Dimensions order shall appear in the relative order T, then Z, then Y, then
X. In addition, any other dimension shall be placed to the left of the
spatiotemporal dimensions.

● Any Time Coordinate shall define the calendar attribute…
● ...

GRIB Collections

…

…

…

…

GRIB Feature Collections
NCAR Research Data Archives (RDA)
 #files #records #vars #runtimes #Gbytes
NCEP FNL Global Tropospheric Analyses 22093 6473541 182 22093 1700
NOAA CIRES 20th Century Global Reanalysis Version 2 40468 152460254 113 209164 13600
NCEP Global Ocean Data Assimilation System (GODAS) 415 85905 12 415 117
Subsurface Temperature/Salinity Analyses (1945-present) 402 231552 4 816 16
ECMWF Reanalysis Interim Project 51860 363020 7 51860 33930
...

makes these available as multidimensional arrays
 float data(reftime, ens, time, z, y, x)

creates logical views (2D time, best, analysis-only, …)

GRIB -> NetCDF Issues
1 External Table Nightmare

• can be solved if you are the data provider

2 Data Model Differences
• record oriented GRIB vs multidimensional NetCDF
• What is a Variable (and what is its name)?
• can be solved if you are the data provider
• generally impossible due to data model mismatch

3 Missing records in multidimensional array
4 File Sizes / Compression

• adding compression options to compete with GRIB

Compression
● On NCEP Model GRIB files “limited precision” floats, bzip2/grib size vary

between .4 and 1.7, average 1.2
● Bzip2 looks like a good candidate to add as a standard compression

option in netCDF-4 in addition to deflate
● Idea is to offer options that tradeoff file size and un/compress times
● We are considering a “lossy compression” option in netCDF-4 using bit

shaving and/or scale/offset
● Other compression options still to explore: fpzip, zfp from Peter

Lindstrom (llnl), libaec from Luis Kornbluth (dkrz)

Big Data

• Now: File-at-a-time processing in Fortran
• Need: Set-at-a-time processing in HLQL
• Declarative language like SQL (vs. procedural):
• Define dataset subset to work against
• Define computation
• Let the system figure out how to do it

http://research.microsoft.com/apps/pubs/default.aspx?id=64537
http://research.microsoft.com/apps/pubs/default.aspx?id=64537
http://research.microsoft.com/apps/pubs/default.aspx?id=64537
http://research.microsoft.com/apps/pubs/default.aspx?id=64537

“Coordinate Space” Data Access:

Fake SQL:

Dimensions

What is a netCDF Dimension?

1. Defines shape of a multidimensional array
2. Ordering defines the layout on disk, and thus the cost

of accessing array sections
○ NetCDF-4 chunking gives lots more user control

3. Sharing enables coordinate systems
○ use netCDF-4 instead of HDF-5

4. Coordinate Systems are needed for georeferencing
But there isnt a clear understanding in CF Community of
how to use Dimensions, ie of Coordinate Systems

Example of station data
Whats wrong?
dimensions:

 lat = 193;

 lon = 193;

 time = 24;

variables:

 float data(lat, lon, time);

 :coordinates = “lat lon time”;

 float lat(lat);

 float lon(lon);

 int time(time); Only “works” when lat=1, lon=1

Correct
dimensions:

 station = 193;

 time = 24;

variables:

 float data(station, time);
 :coordinates = “lat lon time”;

 float lat(station);

 float lon(station);

 int time(time);

Orthogonal multidimensional array
representation of time series

Correct
dimensions:

 station = 193;

 time = 24;

variables:

 float data(station, time);

 :coordinates = “lat lon time”;

 float lat(station);

 float lon(station);

 int time(station, time);

Incomplete multidimensional array
representation of time series

Ragged Arrays

Ragged Array
dimensions:

 station = 193;

 obs = 876;

variables:

 float data(obs);

 :coordinates = “lat lon time”;

 float count(station);

 :sample_dimension = “obs”;

 float lat(station);

 float lon(station);

 int time(obs);

Contiguous ragged array
representation of time series

Forecast Models, two times
Whats wrong?

dimensions:

 reference = 30;

 forecast = 24;

variables:

 float data(reference, forecast, y, x);

 :coordinates = “lat lon time”;

 float reference(reference);

 :units = “days since 01-01-2015”

 float forecast(forecast);

 :units = “hours since 01-01-2015”

Correct
dimensions:

 reference = 30;

 forecast = 4;

variables:

 float data(reference, forecast, y, x);

 :coordinates = “lat lon time”;

 float reference(reference);

 :units = “days since 01-01-2015”

 float forecast(reference, forecast);
 :units = “hours since 01-01-2015”

Coordinate System Rules
1. Coordinate = Coordinate Variable or Auxiliary Coordinate Variable
2. Coordinate System = set of Coordinates
3. Define a Coordinate System for a Variable

data:coordinates = “lat lon time altitude”;

4. The dimensions of a Coordinate ⊂ dimensions of the Variable*
* except for ragged arrays

5. The number of Coordinates = dimensionality of the embedding space*
* only for georeferencing coordinates, eliminating duplicates

6. The number of Dimensions = dimensionality of the embedded space
7. The number of Dimensions = number of independent variables

Variables as Sampled Fields
● Field is a function on the vector space of real numbers: F : Rn ➔ Rm

● Variable represents a sampled Field, a multidimensional array containing the values
of the Field at some set of points: float data(time, level, lat, lon)

● The sampling is specified by dimensions = D1 ⊗ D2 ⊗ D3… = (0..n1-1)⊗(0..n2-1)⊗.., the
domain of the variable in Index Space: (time, level, lat, lon) = ∏Di = Dn

● A Variable is then one of the scalar component functions of F: V:Dn ➔ R
● A Coordinate System CS locates the values of the samples, typically on the earth in

real space/time: CS:Dn ➔ Rn

● A Coordinate Axis is one of the components of the vector function CS: CoordAxis
(time, level, lat, lon) ➔ R, common case is one dimensional: lat(lat)

● A CS needs to be invertible to find the array indices from the coordinates: CS-1:
Rn➔Dn in order to find Field’s value: F = V∘CS-1:Rn ➔ Rm

● The Variable and CS must have same domain, that is, share dimensions

